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Abstract. A lumped parameter model is derived for studying hysteretic effects in 
resonant bar experiments on rock. The model uses equations of state obtained by 
approximating closed hysteresis loops in the stress-strain plane by parallelograms. The 
associated approximate nonlinear state relations have a sound speed (modulus) that takes 
two values. Assuming hysteresis and discrete memory to be the primary nonlinear 
mechanisms, periodic solutions corresponding to these equations of state are obtained 
analytically for single-frequency continuous wave drivers, and their frequency spectral 
densities are analyzed. In this simple approximation, if hysteretic contributions to the 
signal speed are a correction to the linear elastic signal speed (i.e., the parallelogram is 
narrow), the model predicts that the spectral density at even multiples of the source 
frequency is zero, and an approximate "pairing" of amplitudes is predicted for odd 
harmonic multiples. Comparison of the model spectrum with experimental data shows the 
model to be qualitatively correct. We conclude that hysteresis is an important mechanism 
in rocks. We consider the model to be a prototype. 

Introduction 

Nonlinear elastic wave propagation experiments have been 
conducted at Los Alamos National Laboratory and the Institut 
Frangais du P•trole as part of an effort to determine the non- 
linear state parameters in earth materials [e.g., Meegan et al., 
1993; Johnson et al., 1996; B. Zinszner et al., Influence of 
change in physical state on elastic nonlinear response in rock: 
Effects of effective pressure and water saturation, submitted to 
Journal of Geophysical Research, 1996]. Three types of experi- 
ments are being conducted with this goal in mind: static stress- 
strain, dynamic pulse propagation, and dynamic resonance ex- 
periments [see, e.g., Johnson and Rasolofosaon, 1996]. The 
dynamic experimental evidence suggests that more familiar 
approaches to modeling a nonlinear resonant system, such as 
the Dutting equation [see Stoker, 1950], do not predict the 
empirical behavior of the harmonic spectrum and resonant 
frequency alteration for earth materials [Guyer et al., 1995a, b; 
Johnson et al., 1996]. That is, classical predictions of harmonic 
distribution and resonant frequency shift as a function of drive 
amplitude in resonance experiments on earth materials do not 
match observation. This same conclusion has also been ob- 

tained from pulse mode wave experiments [Ten Cate et al., 
1996; Van Den Abeele and Johnson, 1996; Kadish, 1995; Kadish 
et al., 1996]. 

It is clear from static tests on earth materials that hysteresis 
and discrete memory are characteristic [Boitnott, 1993; Hol- 
comb, 1978, 1981; Gardner et al., 1965; Birch, 1966]. These two 
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characteristics, together with the poor predictions obtained 
from classical nonlinear wave theory [Guyer et al., 1995a, b] 
suggest that hysteresis and discrete memory may play an im- 
portant role in propagating and standing waves. There is con- 
siderable experimental evidence suggesting that hysteresis and 
discrete memory and/or other nonlinear phenomena strongly 
effect propagating and standing waves at strain levels as low as 
10 -7 under ambient conditions [Ostrovsky, 1991; Guyer et al., 
1995a; Johnson et al., 1996]. 

We introduce a simple lumped parameter model to evaluate 
the effects of hysteresis in resonant bar experiments. It will be 
demonstrated that the lumped parameter model (also "zero 
dimensional") predicts resonant periodic motions whose spec- 
tral amplitudes exhibit qualitative properties similar to those 
observed in experiments. The term hysteresis is usually em- 
ployed in two contexts: history-dependent multivalued state 
relations in nonlinear materials (e.g., between stress and strain 
in rocks and between the magnetic field and magnetic induc- 
tion in magnetic materials) and the discontinuous relations 
observed between input and output experimental parameters 
(e.g., frequency versus amplitude) in driven nonlinear systems. 
Both of these hysteretic phenomena are observed in rocks. 
Because the latter form is common to almost all nonlinear 

systems (e.g., Dutting's equation), its presence cannot be used 
to deduce the existence of a multivalued state relation. The 

lumped parameter model described in this paper uses a mul- 
tivalued stress-strain relation that is amenable to mathematical 

analysis of oscillations driven in resonant bar experiments. 
Although the modeling procedure accommodates other non- 
linearities, the multivalued nature of the state relation is the 
only nonlinearity considered here in order to facilitate analysis. 
(It is also the only source of dissipation considered.) Conse- 
quently, one does not expect complete quantitative agreement 
with data from nonlinear resonant bar experiments. However, 
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Figure 1. The model hysteresis loop used in this paper, for 
the special case where o- o = 0 (parallelogram), and a more 
physically realistic version (bold line) in stress-strain (o--e) 
space. For the approximating parallelogram, there are pre- 
cisely two signal speeds (equivalently elastic moduli). The ar- 
rowheads indicate direction of increasing time. 

the model does allow a qualitative determination of the rela- 
tive strengths of hysteresis vis-h-vis other nonlinear effects. In 
particular, the hysteretic spectral signature exhibits unique and 
easily identified properties for weak nonlinearity. 

In the following section an overview of the theory is pro- 
vided, but the details have been placed in the appendices. 
Spectral data from recent resonant bar experiments are pre- 
sented in the subsequent section. A discussion of the lumped 
parameter model and the pertinent spectral properties it pre- 
dicts for resonant bar experiments follows the data section. 

Wave Equations With Hysteresis 
One-dimensional nonlinear pulse propagation in ideal and 

nonideal elasticity is governed by coupled wave equations for 
the stress o-and particle velocity v. The local signal speeds, 
c sig,al, are given by 

C signal • • lO , (1) 
where e is the local strain and p* is the mass density of the 
unstressed sample. In nonideal materials the stress-strain re- 
lation is not one-to-one. Hysteresis and other plasticity phe- 
nomena result in multivalued state relations (in the remainder 
of this paper, use of the term hysteresis will be restricted to 
mean phenomena associated with multivalued state relations 
as opposed to hysteresis of the resonance frequency-amplitude 
response). An example of such a relation is illustrated in Fig- 
ure 1. The curvilinear loop in the figure represents an empir- 
ical path. Arrows along the path indicate direction with in- 
creasing time. The counterclockwise direction corresponds to 
hysteresis being dissipative. The parallelogram in the figure is 
a convenient approximation, which is discussed in detail below. 
Sufficiently simple periodic evolution of stress and strain re- 
sults in repetition of closed loops of the type shown in Figure 
1. As illustrated by the curvilinear loop, hysteretic state rela- 
tions usually exhibit discontinuous variations in local signal 
speed (or modulus) when the time derivative of stress changes 
sign. The material responds differently to increases in stress 
than it does to decreases. The hysteretic response is generally 
attributed to the compliant features in the material such as 

cracks, grain-to-grain contacts, etc. The discontinuities in sig- 
nal speed produce shocks not seen in the limit of ideal elas- 
ticity. The shocks are space-time paths across which derivatives 
of stress and particle velocity are not continuous. Evidently, it 
is necessary to account for local histories of stress for accurate 
numerical simulations of pulse propagation in hysteretic 
materials. 

The simplest mathematical models of signal speed in a hys- 
teretic material are obtained by approximating curvilinear hys- 
teresis loops by parallelograms, an example of which is illus- 
trated in Figure 1. In this paper approximations of the form 

p* de =c 1 + sgn at h_+) (2) 
are used. Here, c• is the square of the constant "elastic" signal 
speed of the medium, and the h are hysteresis constants (sub- 
scripts refer to the sign of the sgn function). 

Effectively, the medium behaves like two different elastic 
materials. The sgn function and the h _+ provide a mathematical 
prescription for switching between one material and the other. 
The signs of the hysteresis constants determine dissipative 
properties of hysteresis. If they are negative, as will be assumed 
in this paper, hysteresis is a dissipative mechanism. It is the 
only dissipative mechanism and nonlinear effect included in 
this treatment. The sgn function of the time derivative of 
(o- - 0-0) 2 determines the times at which the change in elastic 
behavior occurs. The values of the hysteresis constants h+_ 
together with the elastic signal speed determine the slopes (i.e., 
moduli) of the stress strain relation on the parallelogram ap- 
proximation to the hysteresis loop as shown in Figure 1 for the 
special case o- o -- 0. During propagation, the speeds are piece- 
wise constant in time, greatly simplifying analysis. 

Following the arrowheads on the curvilinear loop indicating 
the direction of time in Figure 1, abrupt changes in slope occur 
when (o- - 0-0) 2 is maximum, Cr2max . These abrupt changes are 
physical. (When the maximum is achieved, the time derivative 
of (o- - 0-0) 2 changes sign and the material switches elastic 
states.) Figure 1 also shows that the slopes at common values 
of o- depend on whether (o- - 0-0) 2 is increasing or decreasing 
with time. 

With the parallelogram approximation to the closed loop, 
discontinuities in signal speed also occur when o- - o- o changes 
sign and require special treatment. These discontinuities are 
not physical. Their presence is a price one pays for the math- 
ematical simplification gained by introducing the parallelo- 
gram approximation to the true hysteresis loop. Equation (2) 
could be made more physically realistic by smoothing to pro- 
vide continuous signal speeds at o- = o- o, as illustrated by the 
curvilinear path in Figure 1; however, the analysis is much 
more difficult and, we believe, would not add significantly to 
the physics contained in the model. Equation (2) may be re- 
garded as a limiting case of expressions not having this discon- 
tinuity. In order to avoid nonphysical shocks when using (2), 
continuity of first derivatives of stress and particle velocity will 
be imposed when o- - o- o changes sign. 

In Appendix A, a lumped parameter model for temporal 
oscillations driven in resonant bar experiments is derived from 
propagation equations with signal speeds modeled using (2). 
The nonlinear oscillator equations for the evolution of the 
dimensionless scaled lumped stress s(t) and particle velocity 
w(t) are (see Appendix A) 



KADISH ET AL.: EVALUATING HYSTERESIS IN EARTH MATERIALS 25,141 

Frequency 

I 3 
I I i i 
5 7 9 11 

Frequency 

Figure 2. (top) Single-frequency source spectrum, and (bot- 
tom) detected spectrum of the type predicted. 

(3) 

where v(0, t) is the particle velocity applied at the end of the 
bar at z = 0. Here we note that both /5 and 11 are positive 
constants that are properties of the material. 11 is an angular 
frequency, and/5 is a hysteretic strength parameter. The plus 
and minus signs appearing in front of/5 and as superscripts of 
s(t) and w(t) are those of the sgn function in (2). 

In the absence of hysteresis, /5 = 0, and application of a 
source function v(0, t) having angular frequency 11 produces 

unbounded stresses and particle velocities. For 0 </5 < 1 the 
model of the hysteresis effect is dissipative, and solutions to (3) 
are bounded. In Appendix B, (3) is solved for/5 << 1 (weak 
hysteresis) when v(0, t) is periodic with angular frequency 
In Appendix C the acceleration frequency spectrum of those 
solutions is analyzed. Characteristic properties of solutions in 
resonance with the driver are that to order 1 in the asymptotic 
expansion in small/5, (1) terms corresponding to even multi- 
tudes of l• are absent, i.e., have zero amplitude (see equation 
(C3)), and (2) there is an approximate pairing of the acceler- 
ation amplitudes of terms corresponding to higher odd multi- 
ples of l• (i.e., ratios of the amplitudes of the 51• and 71• terms 
are equal to 1 within 2%, while those of the 91• and 1 ll• terms, 
etc., are equal to 1 within <1% (see equations (C5) and (C6)). 

These results are illustrated qualitatively in Figure 2. The 
top portion of the figure shows a the spectrum of the driver. 
The bottom portion of the figure shows a detected spectrum of 
the type predicted by the model. 

Comparison With Experimental Data 
A schematic of a resonant bar experiment is shown in Figure 

3a along with the typical character of nonlinear response in 
resonance in rock (Figure 3b). The bar, occupying 0 < z < L, 
is driven at z = 0 with a periodic velocity v(0, t) while the end 
at z = L is stress free, o-(L, t) = 0. The resonance peak shifts 
downward with increasing drive level as a result of the nonlin- 
ear response of the material. The plot also illustrates the hys- 
teretic nature of the frequency-amplitude response of a reso- 
nant bar driven at nonlinear levels; the upgoing and downgoing 
frequency curves are very different from each other when the 
bar is driven at nonlinear levels. 

Figure 4 illustrates experimental harmonic measurements 
from three rock types: Fontainebleau sandstone, Lavoux lime- 
stone, and Meule sandstone [see, e.g., Lucet and Zinszner, 
1992]. The detected acceleration is plotted on the horizontal 

Frequency 
Swept 
CW Drive 

z=O 

v (O,t) 

z=L 
Time 

• -- Averaged 
Acceleration 

o (L,t) = 0 

145 

125 
105 

85 

65 

45 

25 

5 

B 

A 

1290 1310 1330 1350 1370 1390 1410 

Frequency 

Figure 3. Illustrations of (a) resonant bar experimental configuration and (b) typical resonant frequency 
response. In the bottom plot, dotted (solid) curves show the response as the source frequency is increased 
(decreased) while the amplitude is held constant. The curve labeled "A" is an amplification of the response 
of a very low amplitude source in order to illustrate its behavior. The peak at B illustrates the response to the 
largest drive level. 
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Figure 4. Illustration of Young's mode resonant bar experi- 
mental spectral ratios for three different rock samples: (a) 
Meule sandstone, (b) Lavoux limestone, and (c) Fontainebleau 
sandstone. Note the dominance in amplitude of the third har- 
monic over the second in each case. In the limestone, both the 
third and fifth harmonics are larger than the second harmonic. 
The other symbols represent higher harmonics. 

axis, and the harmonic ratios, •oi/•ol, of the ith frequency 
multiple of the source frequency are plotted on the vertical 
axis. The harmonic amplitudes were obtained from a Fourier 
transform of the time signal measured at peak resonance for 
each successive resonance peak with increasing drive level. The 
data are reliable to -72.25 dB. The rocks were under ambient 

conditions for the measurements. 

The three rock types have very different mineralogy, crack, 
and grain contact structure; however, they all illustrate typical 

characteristics of rock. As shown in Figure 4, for instance, the 
third harmonic amplitude is generally the largest. This is a very 
common observation in rocks in general. In all of the rock 
samples shown in Figure 4 there is a dominance in amplitude 
of the odd harmonics over the neighboring even harmonics; 
i.e., •o3 is almost always larger than •o2 and •o4, •o5 is always 
larger than •o4 and o•6, etc. 

If hysteresis is important, the theory of the preceding section 
should be most accurate at low amplitude where other sources 
of nonlinearity are less important. There were no data avail- 
able at very low amplitude. Consequently, linear fits of the 
available data were extrapolated to low amplitude. Figure 5 
illustrates ratios of •o7/•o5 for the three rock types obtained 
from the data illustrated in Figure 4, together with a least 
squares linear fit. Extrapolation of the linear fits to zero accel- 
eration yields ratios of about 1.77 for Fontainebleau, 0.082 for 
Lavoux, and 0.27 for Meule. Note that as the amplitude of the 
drive decreases, the ratios increase in all cases. While these 
extrapolations do not exhibit the predicted pairing of harmon- 
ics (ratio = 1), the data and slope of the fit are compatible with 
hysteresis dominating other nonlinear effects at low amplitude. 
If only classical nonlinearities were present, these ratios would 
decrease to zero with decreasing amplitude. 

Although the theory presented here does predict general 
characteristics such as the dominance in amplitude of neigh- 
boring odd harmonics, modeling of the state relation must be 
extended to include other nonlinear phenomena as well. 

Discussion and Conclusions 

Lumped parameter models of resonant bar experiments 
(equations (A1)-(A4)) were obtained from one-dimensional 
equations of conservation of mass and momentum for nonideal 
elastic materials whose state relation is hysteretic. Periodic 
solutions were obtained analytically, and their spectra were 
compared with the experimental data. 

The lumped parameter models were applied to materials 
driven in resonance from one boundary and free at the other. 
This configuration is the one used in nonlinear resonant bar 
experiments. Periodic solutions driven by a single-frequency 
source were obtained for approximating stress-strain loops. 
For analytical purposes, the simplest closed hysteresis loop in 
stress-strain coordinates is a parallelogram because it corre- 
sponds to a stress-strain relation with only two signal speeds. 
For weak hysteresis, the theory predicts the amplitude of res- 
onant motions to scale inversely with the strength of the hys- 
teresis. (This is because hysteresis was the only damping mech- 
anism included in this treatment; see equation (C3)). In 
addition, at odd multiples of the source frequency, the spectra 
of these solutions exhibit pairing: the ratios of the amplitudes 
of the seventh to fifth, eleventh to ninth, etc., are very close to 
unity. Because the only nonlinearity present is hysteresis, even 
harmonics have zero amplitude in this approximation. If other 
nonlinearities were included in the model, e.g., nonconstant 
elastic signal speed, even harmonics would be present and the 
pairing of odd harmonic amplitudes would be weakened. 

The pairing of odd harmonic amplitudes predicted by the 
theory was qualitatively confirmed by experiment; i.e., linear 
extrapolation of the •o7 to •o5 ratio to low-amplitude drive was 
consistent with theory. (Note that higher frequencies could not 
be used because these data were beneath the noise floor.) The 
linear extrapolation to low amplitude is not conclusive; how- 
ever, as is shown in Figure 5, the extrapolations indicate an 
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increasing ratio as amplitude decreases. In the absence of 
hysteresis, ratios of spectral amplitudes would be expected to 
approach zero with decreasing amplitude on the basis of clas- 
sical perturbation analysis [Stoker, 1950]. Even with hysteresis, 
at low drive levels the absolute harmonic amplitudes approach 
zero, but their ratio, according to this model, does not. Con- 
sequently, the extrapolations of the observations are consistent 
with hysteresis being a dominant mechanism and suggest that 
care should be taken when applying classical perturbation 
methods to hysteretic materials. 

The lumped parameter model derived here can be used with 
more complete state relations. The only dissipative and non- 
linear mechanism considered was that due to hysteresis. The 
model can accommodate other damping mechanisms and non- 
linearities. Further development of the model will seek a more 
complete account of observed spectral properties by expanding 
the prototype to include additional phenomena. 

Appendix A: Lumped Parameter Model 
The simplest one-dimensional model for studying compres- 

sional wave propagation in elastic and elastic-plastic media is 
the first-order 2 x 2 system consisting of the equations of 
continuity and force balance for the stress, •r(x, t), and par- 
ticle velocity, v(x, t) (the laboratory position coordinate is x, 
and time is t). In Lagrangian coordinates (i.e., coordinates 
fixed in the material), 

I O•r Ov Ov 
=0 p* .... 0 (A1) d•r/de ot Oz Ot Oz 

where e(z, t) is the strain; a state, or stress-strain, relation 
between •r and e has been assumed; and p* is the mass density 
in the absence of stress, where the laboratory coordinate x of 
an element is a function of its initial position, or Lagrangian 
coordinate z, so that x = x(z, t) (see Figure 3). The particle 
velocity is the partial derivative of x with respect to t. 

In this appendix and the ones that follow, the expression for 
d(r/de given by equation (2) of the main text is used. In this 
appendix a lumped parameter model for resonant bar experi- 
ments is derived using (A1). The method, described below, is 
equivalent to a spatial averaging of (A1). 

The lumped parameters for the particle velocity and stress 
for a bar as illustrated in Figure 3a will be denoted by v(t) and 
•r(t), respectively. It will be assumed that a driving particle 
velocity, v(0, t) is applied at one end of the bar, z = 0, and 
that the other end of the bar, z = L > 0, is stress-free. We 
reduce the dimensionality of the system given in (A1) by re- 
placing spatial derivatives by difference quotients using the 
gradient scale lengths Z,, and Z,, defined by 

0 vñ(t) - v(O, t) 
v(z t)• 

Oz ' z•, 

0 •r-*(L, t) - •r(t) •rñ(t) 

Oz (r(z, t) = Z•, - Z•, ' 

(A2) 

respectively. The superscripts refer to the sign of the sgn func- 
tion in (2). The time derivatives of (A1) are replaced by time 
derivatives at values of stress and particle velocity at values 
between the lumped parameter and known boundary values 
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0 

Ot 

0 d 

Ot v(z, t) • • [Oñv(0, t) + (1 - O•,)v-+(t)] 
(A3) 

d d 

--o.(z, t) • • [O•,o.(t) + (1 - O•,)o.-+(L, t)] = •-/[O•,o.(t)]. 

The O are intermediate value parameters (i.e., if the O are 
assigned different values between zero and one, the quantities 
being differentiated take values between the boundary data 
and the lumped parameters). Substituting (A2) and (A3) in 
(A1) yields a coupled system of first-order ordinary differential 
equations for the lumped particle velocity parameter v(t) and 
stress parameter o.(t). 

d 1 do- 

dt [ O•,o.(t) ] v-+(t) - v(0, t)] :0 

appearing in (3) are obtained from the definitions 

p 0,,(1 - 0,) Z, s+-(t) 

1 

(v+-(t) - v(O, t)) = (1 - 0,,) w+-(t) 

(A9) 

Assuming •-•2 is positive, we must have 0 < 8 for hysteresis to 
be dissipative. Therefore the gradient scale length associated 
with an increasing magnitude of stress is less than that associ- 
ated with a decreasing magnitude of stress, and the principle 
dynamic effect of hysteresis in the model is seen to be associ- 
ated with an abrupt change in effective gradient scale lengths 
for stress. Hysteresis will be said to be weak if the difference in 
these gradient scale lengths is small (i.e., if 8 is small). 

d o.+-(t) 
dt [O•v(0, t) + (1 - O?•)v-+(t)] + = 0 p'Z5 

(A4) 

Constraints exist that limit the number of independent gra- 
dient scale lengths and intermediate value parameters in the 
system. Because the terms that are not time derivatives are 
integrable when the derivative of the stress changes sign, the 
terms being differentiated are continuous. This implies that 
there are only two independent intermediate value parameters 

O •+, = O,? = O •, O,+• = O • -= O• (AS) 

Moreover, because the time derivative of o.(t) is continuous 
when o.(t) changes sign, the first relation in (A4) yields the 
constraint 

1 +: p*Z•,3• p*Z - (A6) 
Equation (A6), together with the second relation in (A5) and 
continuity of v(t), implies that the first derivative of the o.(t) 
is a continuous function of time. It must therefore vanish at 

maxima and minima of o.(t). At stationary values of o.(t), the 
v(t) - v(O, t) : O. 

Differentiation of (A4) using (A5) and (A6) yields oscillator 
equations for the stress and particle velocity parameters: 

d 2 o.+- t) + 112-+ p* 0,,(1- 0•,) Z dt v(O, t) •-t -2 p 7, 

d 2 

dt 2 (v-+(t)- v(O, t)) + ll2_+(vñ(t)- v(O, t)) (A7) 

1 d 2 

(1 - O,,) dt 2 v(O, t) 
where 

1 C 2 (1 _+ 8) 2 
= 112(1 _+ 8) 2 (A8) 

O,•( l - O•,) Z•, Z,• 

defines the frequency parameters appearing in (A7) and in 
equation (3) of the main text. The scaled lumped parameters 

Appendix B: Determination of the Stress 
In this appendix we obtain an asymptotic expansion for the 

stress when 8 is small and the displacement source term for the 
resonant bar is v(0, t) = -l/ sin lit. The periodic stress 
generates a simple closed parallelogram in the stress-strain 
plane (see Figure 1). To simplify the presentation, we intro- 
duce dimensionless parameters r, S (r), and W(r) in place of 
time, stress, and particle velocity, given by 

r--lit 

Z•,fia-+ ( r) 
S-+(r) = O,•(1 - O,,) Vp,C 2 (B1) 

-- ( - 03 v 

For clarity, the same physical lumped parameter symbols have 
been used even though the independent variable t has been 
replaced by r. With these variables, the equation for the di- 
mensionless stress (see (A7)) is 

d 2 

d•.2 S--+(• -) + (1 -+- 8)2S-+(• ') = COS •' (B2) 
W(r) may be found from S (r) using (A4). 

Our procedure for determining S(r) with period 2,r is as 
follows: We use a clock for times T given by 

r = T + (I) - ,r/2 (B3) 

which is set so that dS(T)/dT = 0 at T = +w/2 with 
dS(T)/dT > 0 on the half-period interval -w/2 < T < 
+ ,r/2, and we require S ( - ,r/2) = - S ( + ,r/2). The phase 
depends upon 8. Let To be the time (to be determined) in the 
interval - ,r/2 < T < + ,r/2 at which S (To) = 0. Requiring 
periodicity, the stress on -,r/2 < T < +,r/2 and (B2) 
implies that the continuation onto + ,r/2 < T < +3,r/2 is 
given by S(T) = -S(T - ,r) (see Figure B1), with obvious 
periodic continuation of the solution for all times. Again using 
the same symbol for the stress parameter, 

d 2 

dr 2 St(T) + (1 +_ 8)2S+-(T) = -sin (r + cI)) (B4) 
The solutions to (B4) for -,r/2 < T < + ,r/2 are given by 

[(1 _+ 8) 2- 1]S+-(T)=A t cos [(1 _+ a)(r- r0)] 

+ B -+ sin [(1 _+ 8)(r- r0)] + sin (r + cI)) (B5) 
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ds/d{ 

,•o+• 

•o 

In terms of the dimensionless parameters of Appendix B, 
(A4) becomes 

d d 

w+(r) -- • s+(r) (1 -i- (•)2S+-(r) = • w+(r) (C1) 

Since the dimensionless stress and strain have period 2,r in T, 
it is natural to represent them as a Fourier series in sine and 
cosine functions periodic in T on -,r < T < + ,r. Odd- 
numbered harmonics will not appear in the series because 
s(r + = -s(r). 

Up to and including terms of order one, the first equation of 
(C1) is 

d [(1-Ov)v-+(T) 1 dT V = (1 - O•,) cos (T + •) 

+ (l q- a)2S-+(T) • (l - Ov) cos T 

Figure B1. Phase space representation of the closed hyster- 
esis loop from Figure 1 for the evolution of the dimensionless 
stress. Arrowheads on the curve indicate the direction of vari- 

ation. The plus and minus signs in quadrants correspond to the 
sign of the product of stress and its derivative in the quadrant. 
The period is 2,r. Two points on the solution path lying on the 
same straight line though the origin are equally distant from 
the origin and separated in time by 

Equation (B5) contains six 8-dependent constants, ,4---, B---, 
To and •, that must satisfy the six symmetry and continuity 
constraints on the interval' 

S-(-'rr/2) = -S+(+,r/2), 
d d 

d T S + (To) = •-f S- (To), 

(B6) 
d d 

St(To) = O, d• S+( +*r/2) = • S-(-,r/2) = 0 
For/5 << 1, (B6)yields 

T0= •-- 8+O(82 ) •=5Tø+O(82 ) 

,r/4 1{(•) S +(T) = • sin T + • T- sin T 

+ 1-• •- r cost +O(8) (B7) 

w/4 1{(•) S-(T)=•sinT+• T+ sinT 

+ 1-• •+T cost +O(a) 
The linear time dependence in the asymptotic expansions for 
s (T) in 8 is due to expansions of trigonometric functions hav- 
ing 8-dependent arguments. 

Appendix C: Acceleration Frequency Spectrum 
The time series and spectra from resonant bar experiments 

are usually obtained from accelerometer measurements. In 
this appendix we use (A4) and the stress given by (B7) to 
obtain the lead terms up to order 1 in the expansion of the 
acceleration spectrum for weak hysteresis. 

sinT+• TsinT+ 1- cost 

+ • [ _+ (T cos T + sin T) ] (C2) 

Since the only odd function in T on -,r/2 < T < + ,r/2 in 
(C2) is the term that varies inversely with/5, the only terms of 
order 1 in the Fourier series for the acceleration are odd 

harmonics of cosine functions. Writing 

d [(1-O•,)v(T)] rr/4 • dT V • -•- sin T + • (X2n+l COS (2n + 1)T 
n=0 

(c3) 

for T on -,r < T < +,r, one finds for n > 0 

1 (2n + 1)2 
a2,+, = • [n(n + 1)] 2 + n 

1 (2n + 1)2 
a2n+, = • [n(n + 1)] 2- (n + 1) 

n even 

n odd 

(C4) 

Setting n = 2k for k = 1, 2, 3,---, one finds 

1 1 

I[cr2(2•'+')+ll- Icr2{2k)+•[I- 5 (2k)(2k + 1)2(2k + 2) 
1 1 

32 k 4 

(C5) 

where the asymptotic expression is intended for k >> 1. 
Setting n = 2k + 1 for k = 1, 2, 3, ..., one finds that for 
large k 

1 1 

1l"2,2•+,,+,[- I-=,,_•+=)+,11 • 32 k = (C6) 

consequently, a "pairing" of amplitudes is obtained (see Figure 
2). The pairing occurs fairly early in the series and becomes 
more pronounced. For example, for n = 2, 3 (k = 1 in (C4)) 
andn = 4, 5 (k = 2 in(C4)) 

0.98, Icr,,/cr01 • 0.996 (C7) 

while Ic•7/c•9l • 1.68. 
For n = 0, one obtains 

(C8) 
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